Xin chào các bạn,
Ai có nhu cầu học tìm hiểu lý thuyết điều khiển tự động cơ bản bằng tiếng Anh xin cho tôi biết, tôi sẽ cung cấp cho một số tài liệu và có một số hướng dẫn cần thiết. Nội dung như sau:
Basic Control Theory
(35 hours)
Module 1: Modelling
1. Mathematical Modelling of Dynamic Systems 1
2. Continuous Time Models – Ordinary Differential Equations 1
3. General Modelling Principles 2
3.1 Mechanical Systems 2
Example 1 A Simple Pendulum 2
Example 2 A Mass-Damper System 2
3.2 Liquid Level Storage Systems 4
Example 3 A Liquid Level Storage System 4
3.3 Electrical Systems 7
Example 4 Closed-Loop RLC Circuit 7
4. Review of Laplace Transform 8
4.1 Laplace Transform 8
4.2 Laplace Transform Theorems 10
4.3 Applications of Laplace Transform 13
Example 5 13
Example 6 15
Example 7 16
Example 8 17
Example 9 19
Example 10 19
Example 11 20
Example 12 21
4.4 Partial Fraction Expansion with MATLAB 23
Example 13 23
Example 14 24
Summary of Module 7 26
Exercises 26
Appendix – Numerical Integration Methods 30
Sample Program in MATLAB 31
Module 2: Modelling (continued), Time Domain Analysis, Frequency Domain Analysis, Time Delay, Steady State Error, Disturbances
1. Transfer Function, Zeros and Poles 1
1.1 Transfer Function 1
1.2 Zeros and Poles 3
2. Block Diagram 5
2.1 Block Diagram 5
2.2 Block Diagram Algebra 8
3. Dynamic Performance 11
3.1 Time Domain Analysis 13
3.1.1 Zero-order Systems 13
3.1.2 First-order Systems 16
3.1.3 Second-order Systems 20
3.1.4 Transient Response Analysis with MATLAB/Simulink 29
3.2 Frequency Domain Analysis 34
3.2.1 Frequency Response of Closed-loop Systems 35
3.2.2 Frequency Domain Specifications 36
3.2.3 Frequency Response of Second-order Systems 38
4. Time Delays 42
4.1 Systems with Time Delays 42
4.2 Approximation of Time Delay 44
5. Steady State Errors 46
5.1 Concept of Stady State Error 46
5.2 Definition of Steady State Error 44
5.3 Steady State Error and Final Value Theorem 47
5.4 Steady State Error with Step Input 50
5.5 Steady State Error with Ramp Input 51
6. Disturbances 53
6.1 Concept of Disturbances 53
6.2 Effects of Disturbance on the System Output 54
6.3 Methods to Reduce Disturbances 54
6.3.1 Reduction at the Source 56
6.3.2 Reduction by Local Feedback 56
6.3.3 Reduction by Feed-forward 57
6.3.4 Reduction by Prediction 58
Summary of Module 8 58
Exercises/Problems 59
Module 3: Stability and PID Control
1. Stability of Linear Control Systems 1
1.1 Definitions of Stability 1
1.2 Concepts of Stability 1
Example 1 4
2. PID Control 6
2.1 What Is PID Control? 6
2.2 Control Actions 6
2.2.1 Proportional (P) Control Action 6
2.2.2 Integral (I) Control Action 7
2.2.3 Derivative (D) Control Action 8
2.2.4 Proportional Integral (PI) Control Action 8
2.2.5 Proportional Derivative (PD) Control Action 9
2.2.6 Proportional Integral Derivative PID Control Action 9
2.3 Types of PID Controller 10
2.3.1 Pneumatic PID Controllers 10
2.3.2 Hydraulic PID Controllers 19
2.3.3 Electronic PID Controllers 25
2.4 Simulation of PID Control System (PID Autopilot) 30
2.4.1 Ship Manoeuvring Model 30
2.4.2 Simulation of PID Autopilot (Nomoto’s First-Order Model) 31
2.5 PID Controllers in Market 37
2.5.1 DTZ4 Controller of Instronics Inc. 37
2.5.2 More Information on the Internet 38
2.6 Examples 38
Example 2 38
Example 3 40
Summary of Module 9 42
Exercises 43
Module 4: Control Components
1. General Structure of a Control System 1
2. Comparison Elements 2
2.1 Differential Levers (Walking Beams) 2
2.2 Potentiometers 3
2.3 Synchros 4
2.4 Operational Amplifiers 5
3. Control Elements 7
3.1 Process Control Valves 7
3.2 Hydraulic Servo Valve 11
3.3 Hydraulic Actuators 15
3.4 Electrical Elements: D.C. Servo Motors 16
3.5 Electrical Elements: A.C. Servo Motors 18
3.6 Hydraulic Control Element (Steering Gear) 18
3.7 Pneumatic Control Elements 19
4. Exampples of Control Systems 22
4.1 Thickness Control System 22
4.2 Level Control System 23
Summary of Module 10 23
Exercises 24
Module 5: Applications of Control
1. Introduction 1
2. Pneumatic Control Systems 1
2.1 Essential Requirements 1
2.2 Basic Pneumatic Control Systems 2
3. Hydraulic Control Systems 6
3.1 Hydraulic Servo Valve and Actuator 6
3.2 Applications of Hydraulic Servo Valve 7
3.2.1 Speed Control System 7
3.2.2 Hydraulic Steering Machine 8
4. Electrical and Electronic Control Systems 10
4.1 Analogue Control Systems 10
4.2 Digital (Computer-based) Control Systems 12
4.3 PLCs (Sequence Control Systems) 13
4.3.1 The Processor Unit 13
4.3.2 The Input/Output Section 14
4.3.3 The Programming Device 14
5. Ship Autopilot Systems 15
5.1 Mathematical Foundation for Autopilot Systems 15
5.1.1 Autopilots of PID Type 15
5.1.2 P Control 16
5.1.3 PD Control 17
5.1.4 PID Control 18
5.2 Automatic Steering Principles 19
5.2.1 Proportional Control 19
5.2.2 Derivative Control 21
5.2.3 Integral Control 22
5.3 Marine Autopilots in Market 23
5.3.1 Autopilot System PR-6000 (Tokimec) 23
5.3.2 Autopilot System PR-2000 (Tokimec) 23
5.3.3 Autopilot System PR-1500 (Tomimec) 24
6. Dynamic Positioning Systems 24
6.1 Basic Principles of Dynamic Positioning Systems 25
6.2 IMO DP Classfications 27
7. Roll Stabilisation Systems 28
7.1 Fin Stabilisation Systems 29
7.2 Rudder Roll Stabilisation System 31
8. Trend of Control Systems 32
Summary of Module 11 32
Exercises 33
----
Ngoài ra có thể học theo nguồn học liệu mở của MIT, môn Principle of Automatic Control:
http://ocw.mit.edu/OcwWeb/Aeronautic...03/CourseHome/
Ai quan tâm xin liên lạc: kamome.seagull@gmail.com
Hải Âu
Ai có nhu cầu học tìm hiểu lý thuyết điều khiển tự động cơ bản bằng tiếng Anh xin cho tôi biết, tôi sẽ cung cấp cho một số tài liệu và có một số hướng dẫn cần thiết. Nội dung như sau:
Basic Control Theory
(35 hours)
Module 1: Modelling
1. Mathematical Modelling of Dynamic Systems 1
2. Continuous Time Models – Ordinary Differential Equations 1
3. General Modelling Principles 2
3.1 Mechanical Systems 2
Example 1 A Simple Pendulum 2
Example 2 A Mass-Damper System 2
3.2 Liquid Level Storage Systems 4
Example 3 A Liquid Level Storage System 4
3.3 Electrical Systems 7
Example 4 Closed-Loop RLC Circuit 7
4. Review of Laplace Transform 8
4.1 Laplace Transform 8
4.2 Laplace Transform Theorems 10
4.3 Applications of Laplace Transform 13
Example 5 13
Example 6 15
Example 7 16
Example 8 17
Example 9 19
Example 10 19
Example 11 20
Example 12 21
4.4 Partial Fraction Expansion with MATLAB 23
Example 13 23
Example 14 24
Summary of Module 7 26
Exercises 26
Appendix – Numerical Integration Methods 30
Sample Program in MATLAB 31
Module 2: Modelling (continued), Time Domain Analysis, Frequency Domain Analysis, Time Delay, Steady State Error, Disturbances
1. Transfer Function, Zeros and Poles 1
1.1 Transfer Function 1
1.2 Zeros and Poles 3
2. Block Diagram 5
2.1 Block Diagram 5
2.2 Block Diagram Algebra 8
3. Dynamic Performance 11
3.1 Time Domain Analysis 13
3.1.1 Zero-order Systems 13
3.1.2 First-order Systems 16
3.1.3 Second-order Systems 20
3.1.4 Transient Response Analysis with MATLAB/Simulink 29
3.2 Frequency Domain Analysis 34
3.2.1 Frequency Response of Closed-loop Systems 35
3.2.2 Frequency Domain Specifications 36
3.2.3 Frequency Response of Second-order Systems 38
4. Time Delays 42
4.1 Systems with Time Delays 42
4.2 Approximation of Time Delay 44
5. Steady State Errors 46
5.1 Concept of Stady State Error 46
5.2 Definition of Steady State Error 44
5.3 Steady State Error and Final Value Theorem 47
5.4 Steady State Error with Step Input 50
5.5 Steady State Error with Ramp Input 51
6. Disturbances 53
6.1 Concept of Disturbances 53
6.2 Effects of Disturbance on the System Output 54
6.3 Methods to Reduce Disturbances 54
6.3.1 Reduction at the Source 56
6.3.2 Reduction by Local Feedback 56
6.3.3 Reduction by Feed-forward 57
6.3.4 Reduction by Prediction 58
Summary of Module 8 58
Exercises/Problems 59
Module 3: Stability and PID Control
1. Stability of Linear Control Systems 1
1.1 Definitions of Stability 1
1.2 Concepts of Stability 1
Example 1 4
2. PID Control 6
2.1 What Is PID Control? 6
2.2 Control Actions 6
2.2.1 Proportional (P) Control Action 6
2.2.2 Integral (I) Control Action 7
2.2.3 Derivative (D) Control Action 8
2.2.4 Proportional Integral (PI) Control Action 8
2.2.5 Proportional Derivative (PD) Control Action 9
2.2.6 Proportional Integral Derivative PID Control Action 9
2.3 Types of PID Controller 10
2.3.1 Pneumatic PID Controllers 10
2.3.2 Hydraulic PID Controllers 19
2.3.3 Electronic PID Controllers 25
2.4 Simulation of PID Control System (PID Autopilot) 30
2.4.1 Ship Manoeuvring Model 30
2.4.2 Simulation of PID Autopilot (Nomoto’s First-Order Model) 31
2.5 PID Controllers in Market 37
2.5.1 DTZ4 Controller of Instronics Inc. 37
2.5.2 More Information on the Internet 38
2.6 Examples 38
Example 2 38
Example 3 40
Summary of Module 9 42
Exercises 43
Module 4: Control Components
1. General Structure of a Control System 1
2. Comparison Elements 2
2.1 Differential Levers (Walking Beams) 2
2.2 Potentiometers 3
2.3 Synchros 4
2.4 Operational Amplifiers 5
3. Control Elements 7
3.1 Process Control Valves 7
3.2 Hydraulic Servo Valve 11
3.3 Hydraulic Actuators 15
3.4 Electrical Elements: D.C. Servo Motors 16
3.5 Electrical Elements: A.C. Servo Motors 18
3.6 Hydraulic Control Element (Steering Gear) 18
3.7 Pneumatic Control Elements 19
4. Exampples of Control Systems 22
4.1 Thickness Control System 22
4.2 Level Control System 23
Summary of Module 10 23
Exercises 24
Module 5: Applications of Control
1. Introduction 1
2. Pneumatic Control Systems 1
2.1 Essential Requirements 1
2.2 Basic Pneumatic Control Systems 2
3. Hydraulic Control Systems 6
3.1 Hydraulic Servo Valve and Actuator 6
3.2 Applications of Hydraulic Servo Valve 7
3.2.1 Speed Control System 7
3.2.2 Hydraulic Steering Machine 8
4. Electrical and Electronic Control Systems 10
4.1 Analogue Control Systems 10
4.2 Digital (Computer-based) Control Systems 12
4.3 PLCs (Sequence Control Systems) 13
4.3.1 The Processor Unit 13
4.3.2 The Input/Output Section 14
4.3.3 The Programming Device 14
5. Ship Autopilot Systems 15
5.1 Mathematical Foundation for Autopilot Systems 15
5.1.1 Autopilots of PID Type 15
5.1.2 P Control 16
5.1.3 PD Control 17
5.1.4 PID Control 18
5.2 Automatic Steering Principles 19
5.2.1 Proportional Control 19
5.2.2 Derivative Control 21
5.2.3 Integral Control 22
5.3 Marine Autopilots in Market 23
5.3.1 Autopilot System PR-6000 (Tokimec) 23
5.3.2 Autopilot System PR-2000 (Tokimec) 23
5.3.3 Autopilot System PR-1500 (Tomimec) 24
6. Dynamic Positioning Systems 24
6.1 Basic Principles of Dynamic Positioning Systems 25
6.2 IMO DP Classfications 27
7. Roll Stabilisation Systems 28
7.1 Fin Stabilisation Systems 29
7.2 Rudder Roll Stabilisation System 31
8. Trend of Control Systems 32
Summary of Module 11 32
Exercises 33
----
Ngoài ra có thể học theo nguồn học liệu mở của MIT, môn Principle of Automatic Control:
http://ocw.mit.edu/OcwWeb/Aeronautic...03/CourseHome/
Ai quan tâm xin liên lạc: kamome.seagull@gmail.com
Hải Âu
Comment