Thông báo

Collapse
No announcement yet.

Tạo xung bằng timer

Collapse
X
 
  • Lọc
  • Giờ
  • Show
Clear All
new posts

  • Tạo xung bằng timer

    Em đang tập tạo xung bằng timer.
    Em gặp bài toán là tạo xung vs f=1hz dùng timer.
    Em ko pít cách tính giá trị để nạp cho TH0 Và TL0.
    Mong mọi người giúp đỡ


  • #2
    bạn xác định tạng thai cần thiết lập.chế độ 0 or 1 or 2,để nạp vào thanh ghi tmod tính giá trị để nạp vào th0 và tl0 nếu dùng lệnh bimhf thường thì mỗi lệnh 1 chu kỳ máy nếu có sử dụng các lệnh giảm nhay như djnz...... thì mỗi lệnh 2 chu kỳ máy,bạn hiểu chưa?

    Comment


    • #3
      Nguyên văn bởi anh_hung_21 Xem bài viết
      bạn xác định tạng thai cần thiết lập.chế độ 0 or 1 or 2,để nạp vào thanh ghi tmod tính giá trị để nạp vào th0 và tl0 nếu dùng lệnh bimhf thường thì mỗi lệnh 1 chu kỳ máy nếu có sử dụng các lệnh giảm nhay như djnz...... thì mỗi lệnh 2 chu kỳ máy,bạn hiểu chưa?
      rất cám ơn nhưng mình học C chứ ko học asm.
      Thank.
      Mong các Pr0 giúp đỡ

      Comment


      • #4
        Ví dụ với thạch anh 12M => 1 chu kì máy = 1us.

        Xung 1Hz => T = 1s. Với độ rộng xung 50% => Ton = Toff = 500ms = 500000 chu kì máy.
        Do 500000 > 65536 (timer 16 bit) nên sẽ có n lần tràn ( tức n lần ngắt trước khi đảo bit ; n = 1,2,3,4...)
        Ví dụ lấy n = 10 thì timer phải đếm 50000 chu kì xung trước khi tràn ( 10 * 50000 = 500000)
        Khi đó giá trị ban đầu đặt cho timer là 65535 - 50000 = 15535.
        Khi đó TH0 = 15535/255
        TL0 = 15536%255

        Sau mỗi lần ngắt thì tăng n lên 1 và nạp lại TH0,TL0. Khi n = 10 thì cho n=0, nạp lại TH0,TL0 và đảo bit đầu ra.

        Comment


        • #5
          Bộ đếm/ bộ định thời trong 8051

          Ø Bộ đếm, bộ định thời là gì?
          Ø Các thanh ghi liên quan
          Ø Cách thức hoạt động của bộ đếm/bộ định thời
          Ø Các bước lập trình bộ đếm/bộ định thời

          Giới thiệu

          Bộ đếm/Bộ định thời: Đây là các ngoại vi được thiết kế để thực hiện một nhiệm vụ đơn giản: đếm các xung nhịp. Mỗi khi có thêm một xung nhịp tại đầu vào đếm thì giá trị của bộ đếm sẽ được tăng lên 01 đơn vị (trong chế độ đếm tiến/đếm lên) hay giảm đi 01 đơn vị (trong chế độ đếm lùi/đếm xuống).
          Xung nhịp đưa vào đếm có thể là một trong hai loại:

          Ø Xung nhịp bên trong IC: Đó là xung nhịp được tạo ra nhờ kết hợp mạch dao động bên trong IC và các linh kiện phụ bên ngoài nối với IC. Trong trường hợp sử dụng xung nhịp loại này, người ta gọi là các bộ định thời (timers). Do xung nhịp bên loại này thường đều đặn nên ta có thể dùng để đếm thời gian một cách khá chính xác.
          Ø Xung nhịp bên ngoài IC: Đó là các tín hiệu logic thay đổi liên tục giữa 02 mức 0-1 và không nhất thiết phải là đều đặn. Trong trường hợp này người ta gọi là các bộ đếm (counters). Ứng dụng phổ biến của các bộ đếm là đếm các sự kiện bên ngoài như đếm các sản phầm chạy trên băng chuyền, đếm xe ra/vào kho bãi…

          Một khái niệm quan trọng cần phải nói đến là sự kiện “tràn” (overflow). Nó được hiểu là sự kiện bộ đếm đếm vượt quá giá trị tối đa mà nó có thể biểu diễn và quay trở về giá trị 0. Với bộ đếm 8 bit, giá trị tối đa là 255 (tương đương với FF trong hệ Hexa) và là 65535 (FFFFH) với bộ đếm 16 bit.

          8051 có 02 bộ đếm/bộ định thời. Chúng có thể được dùng như các bộ định thờiđể tạo một bộ trễ thời gian hoặc như các bộ đếm để đếm các sự kiện xảy ra bên ngoài bộ VĐK. Trong bài này chúng ta sẽ tìm hiểu về cách lập trình cho chúng và sử dụng chúng như thế nào. Phần 1 là Lập trình bộ định thời, và phần 2 là Lập trình cho bộ đếm.

          1. Các bộ định thời của 8051

          8051 có hai bộ định thời là Timer 0 và Timer 1, ở phần này chúng ta bàn về các thanh ghi của chúng và sau đó trình bày cách lập trình chúng như thế nào để tạo ra các độ trễ thời gian.

          1.1 Các thanh ghi cơ sở của bộ định thời

          Cả hai bộ định thời Timer 0 và Timer 1 đều có độ dài 16 bit được truy cập như hai thanh ghi tách biệt byte thấp và byte cao. Chúng ta sẽ bàn riêng về từng thanh ghi.

          1.1.1 Các thanh ghi của bộ Timer 0

          Thanh ghi 16 bit của bộ Timer 0 được truy cập như byte thấp và byte cao:

          Ø Thanh ghi byte thấp được gọi là TL0 (Timer0 Low byte).
          Ø Thanh ghi byte cao được gọi là TH0 (Timer0 High byte).

          Các thanh ghi này có thể được truy cập, hoặc được đọc như mọi thanh ghi khác chẳng hạn như A, B, R0, R1, R2 v.v...



          Hình 1: Các thanh ghi của bộ Timer 0


          1.1.2 Các thanh ghi của bộ Timer 1

          Giống như timer 0, bộ định thời gian Timer 1 cũng dài 16 bit và thanh ghi 16 bit của nó cũng được chia ra thành hai byte là TL1 và TH1. Các thanh ghi này được truy cập và đọc giống như các thanh ghi của bộ Timer 0 ở trên.



          Hình 2: Các thanh ghi của bộ Timer 1.

          1.1.3 Thanh ghi TMOD

          Cả hai bộ định thời Timer 0 và Timer 1 đều dùng chung một thanh ghi được gọi là TMOD: để thiết lập các chế độ làm việc khác nhau của bộ định thời.

          Thanh ghi TMOD là thanh ghi 8 bit gồm có:

          Ø 4 bit thấp để thiết lập cho bộ Timer 0.
          Ø 4 bit cao để thiết lập cho Timer 1.

          Trong đó:

          Ø 2 bit thấp của chúng dùng để thiết lập chế độ của bộ định thời.
          Ø 2 bit cao dùng để xác định phép toán.



          Hình 3: Thanh ghi TMOD.

          1.1.3.1 Các bit M1, M0

          Là các bit chế độ của các bộ Timer 0 và Timer 1. Chúng chọn chế độ của các bộ định thời: 0, 1, 2 và 3 như bảng dưới. Chúng ta chỉ tập chung vào các chế độ thường được sử dụng rộng rãi nhất là chế độ 1 và chế độ 2. Chúng ta sẽ sớm khám phá ra các đặc tính của các chế độ này sau khi khám phần còn lại của thanh ghi TMOD. Các chế độ được thiết lập theo trạng thái của M1 và M0 như sau:

          M1
          M0
          Chế độ
          Chế độ hoạt động
          0
          0
          0
          Bộ định thời 13 bit:8 bit là bộ định thời/bộ đếm, 5 bit đặt trước.
          0
          1
          1
          Bộ định thời 16 bit: không có đặt trước.
          1
          0
          2
          Bộ định thời 8 bit: tự nạp lại.
          1
          1
          3
          Chế độ bộ định thời chia tách.
          Bảng 1: Các chế độ hoạt động của bộ đếm/bộ định thời

          1.1.3.2 Bit C/T (Counter/Timer)

          Bit này trong thanh ghi TMOD được dùng để quyết định xem bộ định thời được dùng như một máy tạo độ trễ hay bộ đếm sự kiện. Nếu bit C/T = 0 thì nó được dùng như một bộ định thời tạo độ trễ thời gian.

          Ví dụ 1:
          TMOD = 0000 0001 (01H) : chế độ 1 của bộ định thời Timer 0 được chọn.
          TMOD = 0010 0000 (20H) : chế độ 2 của bộ định thời Timer 1 được chọn.
          TMOD = 0001 0010 (12H) : chế độ 1 của bộ định thời Timer 1 và chế độ 2 của Timer 0 được chọn.

          Nguồn đồng hồ cho chế độ trễ thời gian là tần số thạch anh của 8051. Điều đó có nghĩa là độ lớn của tần số thạch anh đi kèm với 8051 quyết định tốc độ nhịp của các bộ định thời trên 8051. Tần số của bộ định thời luôn bằng 1/12 tần số của thạch anh gắn với 8051.



          Hình 4: Tần số của bộ đếm/bộ định thời

          Ví dụ 2:

          Tần số thạch anh
          Tần số bộ định thời
          Chu kỳ bộ định thời
          20MHz
          20MHz/12=1,6666MHz
          1/1,6666MHz=0,6us
          12MHz
          12MHz/12=1MHz
          1/1MHz=1us
          11,0592MHz
          11,0592MHz/12=0,9216MHz
          1/0,9216MHz=1,085us
          Bảng 2: Một số tần số thông dụng

          Mặc dù các hệ thống 8051 có thể sử dụng tần số thạch anh từ 10 đến 40MHz, song ta chỉ tập trung vào tần số thạch anh 11,0592MHz. Lý do đằng sau một số lẻ như vậy là tốc độ baud đối với truyền thông nối tiếp của 8051. Tần số XTAL = 11,0592MHz cho phép hệ thống 8051 truyền thông với PC mà không có lỗi.

          1.1.3.3 Bit cổng GATE

          Một bit khác của thanh ghi TMOD là bit cổng GATE. Để ý trên hình 3 ta thấy cả hai bộ định thời Timer0 và Timer1 đều có bit GATE. Vậy bit GATE dùng để làm gì? Mỗi bộ định thời thực hiện điểm khởi động và dừng. Một số bộ định thời thực hiện điều này bằng phần mềm, một số khác bằng phần cứng và một số khác vừa bằng phần cứng vừa bằng phần mềm. Các bộ định thời trên 8051 có cả hai:

          Ø Việc khởi động và dừng bộ định thời được khởi động bằng phần mềm bởi cácbit khởi động bộ định thời TR là TR0 và TR1. Điều này có được nhờ các lệnh Set bit TR0 lên 1 (khởi động bộ định thời) hoặc Clear bit TR0 (dừng bộ định thời) đối với Timer 0, và tương tự TR1 đối với Timer 1. Các lệnh này có tác dụng khi bit GATE = 0 trong thanh ghi TMOD.
          Ø Việc khởi động và ngừng bộ định thời bằng phần cứng từ nguồn ngoài bằng cách đặt bit GATE = 1 trong thanh ghi TMOD.

          Tuy nhiên, để tránh sự lẫn lộn ngay từ bây giờ ta đặt GATE = 0 có nghĩa là không cần khởi động và dừng các bộ định thời bằng phần cứng từ bên ngoài.

          Ví dụ 3:
          TMOD = 0000 0010: Bộ định thời là Timer0, chế độ 2, C/T = 0 dùng nguồn XTAL, GATE = 0 dùng phần mềm để khởi động và dừng bộ định thời.

          Như vậy, bây giờ chúng ta đã có hiểu biết cơ bản về vai trò của thanh ghi TMOD, chúng ta sẽ xét từng chế độ của bộ định thời và cách chúng được lập trình như thế nào để tạo ra một độ trễ thời gian.

          1.2 Lập trình cho chế độ 1

          Dưới đây là những bước hoạt động của timer ở chế độ 1:

          Ø Đây là bộ định thời 16 bit, do vậy nó cho phép các giá trị 0000 đến FFFFHđược nạp vào các thanh ghi TL và TH của bộ định thời.
          Ø Sau khi TL và TH được nạp một giá trị khởi tạo 16 bit thì bộ định thời phải được khởi động. Điều này được thực hiện bởi việc SET bit TR0 đối vớiTimer 0 và SET bit TR1 đối với Timer 1.
          Ø Sau khi bộ định thời được khởi động, nó bắt đầu đếm lên. Nó đếm lên cho đến khi đạt được giới hạn FFFFH của nó. Sau đó, khi nó quay từ FFFFH về 0000thì nó bật lên bit cờ TF được gọi là cờ bộ định thời. Cờ bộ định thời này có thể được hiển thị. Khi cờ bộ định thời này được thiết lập, để dừng bộ định thời: ta thực hiện xóa các bit TR0 đối với Timer 0 hoặc TR1 đối với Timer 1. Ở đây cũng cần phải nhắc lại là đối với mỗi bộ định thời đều có cờ TF riêng của mình: TF0 đối với Timer 0 và TF1 đối với Timer 1.
          Ø Sau khi bộ định thời đạt được giới hạn của nó là giá trị FFFFH, muốn lặp lại quá trình thì các thanh ghi TH và TL phải được nạp lại với giá trị ban đầu và cờTF phải được xóa về 0.



          Hình 5: Timer/counter chế độ 1

          1.2.1 Các bước lập trình ở chế độ 1

          Để tạo ra một độ trễ thời gian dùng chế độ 1 của bộ định thời thì cần phải thực hiện các bước dưới đây:
          1. Nạp giá trị TMOD cho thanh ghi báo độ định thời nào (Timer0 hay Timer1) được sử dụng và chế độ nào được chọn.
          2. Nạp các thanh ghi TL và TH với các giá trị đếm ban đầu.
          3. Khởi động bộ định thời.
          4. Duy trì kiểm tra cờ bộ định thời TF bằng một vòng lặp để xem nó được bật lên 1 không. Thoát vòng lặp khi TF được lên cao.
          5. Dừng bộ định thời.
          6. Xoá cờ TF cho vòng kế tiếp.
          7. Quay trở lại bước 2 để nạp lại TL và TH.

          Công thức tính toán độ trễ sử dụng chế độ 1 (16 bit) của bộ định thời đối với tần số thạch anh XTAL = f (MHz):

          a) Tính theo số Hex
          b) Tính theo số thập phân
          (FFFF - YYXX + 1)*12/f (ms) trong đó YYXX là các giá trị khởi tạo của TH, TL tương ứng. Lưu ý rằng các giá trị YYXX là theo số Hex.
          Chuyển đổi các giá trị YYXX của TH, TL về số thập phân để nhận một số thập phân NNNNN sau đó lấy (65536 – NNNNN)*12/f (ms).
          Bảng 3: Công thức tính độ trễ thời gian theo tần số XTAL (f)

          Ví dụ 4:
          Trong chương trình dưới đây ta tạo ra một sóng vuông với độ đầy xung 50% (cùng tỷ lệ giữa phần cao và phần thấp) trên chân P1.5. Bộ định thời Timer0 được dùng để tạo độ trễ thời gian:

          #include<at89x51.h> //khai báo thư viện cho VĐK 89x51
          void delay(void); //khi báo nguyên mẫu hàm con tạo trễ
          main()
          {
          P1_5=1; //khởi tạo chân P1_5 ở mức cao
          while(1) //vòng lặp vô hạn
          {
          delay(); //chương trình con tạo trễ
          P1_5=~P1_5; //đảo tín hiệu chân P1_5
          }
          }
          void delay(void) //định nghĩa hàm delay
          {
          TMOD=0x01; //chọn timer0, chế độ 1, 16Bit
          TL0=0xF2; //nạp giá trị cho TL0
          TH0=0xFF; //nạp giá trị cho TH0
          TR0=1; //khởi động timer0
          while(!TF0){} //vòng lặp kiểm tra cờ TF0
          TR0=0; //ngừng timer0
          TF0=0; //xóa cờ TF0
          }

          Trong chương trình chính (hàm main) thực hiện gọi hàm con delay() tạo trễ, và đảo liên tục tín hiệu đầu ra ở chân P1_5.
          Trong chương trình con delay() trên đây chú ý các bước sau:
          1. TMOD được nạp.
          2. Giá trị FFF2H được nạp và TH0 - TL0
          3. Bộ định thời Timer0 được khởi động bởi lệnh Set bit TR0.
          4. Bộ Timer0 đếm lên 01 sau mỗi chu kỳ của timer. Khi bộ định thời đếm tăng qua các trạng thái FFF3, FFF4 ... cho đến khi đạt giá trị FFFFH là nó quay về 0000H và bật cờ bộ định thời TF0 = 1. Tại thời điểm này vòng lặp kiểm tra cờ TF0 mới được thoát ra.
          5. Bộ Timer0 được dừng bởi lệnh clear bit TR0.
          6. Cờ TF0 cũng được xóa, sẵn sàng cho chu trình tiếp theo.

          Lưu ý rằng để lặp lại quá trình trên ta phải nạp lại các thanh ghi TH và TL và khởi động lại bộ định thời (đơn giản là ta gọi lại hàm delay()).



          Hình 6: Một chu trình đếm của timer0

          Tính toán độ trễ tạo ra bởi bộ định thời ở chương trình trên với tần số XTAL=11,0592MHz:
          Bộ định thời làm việc với tần số đồng hồ bằng 1/12 tần số XTAL, do vậy ta có 11,0592MHz/12=0,9216MHz là tần số của bộ định thời. Kết quả là mỗi nhịp xung đồng hồ có chu kỳ T=1/0,9216MHz=1,085us. Hay nói cách khác, bộ Timer0 tăng 01 đơn vị sau 1,085ms để tạo ra bộ trễ bằng số_đếm´1,085ms.
          Số đếm bằng FFFFH - FFF2H = ODH (13 theo số thập phân). Tuy nhiên, ta phải cộng 1 vào 13 vì cần thêm một nhịp đồng hồ để nó quay từ FFFFH về 0000H và bật cờ TF. Do vậy, ta có 14 ´ 1,085ms = 15,19ms cho nửa chu kỳ và cả chu kỳ là T = 2 ´ 15,19ms = 30, 38ms là thời gian trễ được tạo ra bởi bộ định thời.

          Tuy nhiên, trong tính toán độ trễ ở trên ta đã không tính đến tổng phí các lệnh cài đặt timer0, các lệnh kiểm tra trong vòng lặp, gọi hàm con… Chính các câu lệnh này làm cho độ trễ dài hơn, dẫn đến tần số của xung vuông ở đầu ra P1_5 không còn đúng như tính toán ở trên. Đây là nhược điểm của C trong lập trình VĐK. Tùy vào từng chương trình biên dịch, mỗi lệnh của C sẽ được biên dịch ra số lệnh ASM khác nhau, để tính toán chính xác ta phải tính cả tổng phí từng dòng lệnh ASM.

          1.2.2 Tìm các giá trị cần được nạp vào bộ định thời

          Giả sử rằng chúng ta biết lượng thời gian trễ mà ta cần thì câu hỏi đặt ra là làm thế nào để tìm ra được các giá trị cần thiết cho các thanh thi TH và TL. Để tính toán các giá trị cần được nạp vào các thanh ghi TH và TL chúng ta hãy nhìn vào ví dụ sau với việc sử dụng tần số dao động XTAL = 11. 0592MHz đối với hệ thống 8051.

          Các bước để tìm các giá trị của các thanh ghi TH và TL:
          1. Chia thời gian trễ cần thiết cho 1.085ms
          2. Thực hiện 65536 - n với n là giá trị thập phân nhận được từ bước 1.
          3. Chuyển đổi kết quả ở bước 2 sang số Hex: ta có YYXX là giá trị Hexa ban đầu cần phải nạp vào các thanh ghi bộ định thời.
          4. Đặt TL = XX và TH = YY.

          Ví dụ 5:
          Giả sử tần số XTAL = 11.0592MHz. Hãy tìm các giá trị cần được nạp vào các thanh ghi vào các thanh ghi TH và TL nếu ta muốn độ thời gian trễ là 5ms.
          Lời giải:
          Vì tần số XTAL = 11.0592MHz nên bộ đếm tăng sau mỗi chu kỳ 1.085ms. Điều đó có nghĩa là phải mất rất nhiều khoảng thời gian 1,085ms để có được một xung 5ms. Để có được ta chia 5ms cho 1.085ms và nhận được số n = 4608 nhịp. Để nhận được giá trị cần được nạp vào TL và TH thì ta tiến hành lấy 65536 trừ đi 4608 bằng 60928. Ta đổi số này ra số hex thành EE00H. Do vậy, giá trị nạp vào TH là EE Và TL là 00.

          void delay(void) //định nghĩa hàm delay
          {
          TMOD=0x01; //chọn timer0 chế độ 1 16Bit
          TL0=0x00; //nạp giá trị cho TL0
          TH0=0xEE; //nạp giá trị cho TH0
          TR0=1; //khởi động timer0
          while(!TF0){} //vòng lặp kiểm tra cờ TF0
          TR0=0; //ngừng timer0
          TF0=0; //xóa cờ TF0
          }

          Ví dụ 6:
          Giả sử ta có tần số XTAL là 11,0592MHz. Hãy tìm các giá trị cần được nạp vào các thanh ghi TH và TL để tạo ra một sóng vuông tần số 2kHz.
          Xét các bước sau:
          1. T = 1/f = 1/2KHz = 500us là chu kỳ của sóng vuông.
          2. Khoảng thời gian phần cao và phần thấp là: T/2 = 250ms.
          3. Số nhịp cần trong thời gian đó là:250us/1,085us = 230. Giá trị cần nạp vào các thanh ghi cần tìm là 65536 - 230 = 65306 và ở dạng hex là FF1AH.
          4. Giá trị nạp vào TL là 1AH, TH là FFH.
          Chương trình cần viết là:

          void delay(void) //định nghĩa hàm delay
          {
          TMOD=0x10; //chọn timer1 chế độ 1 16Bit
          TL1=0x1A; //nạp giá trị cho TL1
          TH1=0xFF; //nạp giá trị cho TH1
          TR1=1; //khởi động timer1
          while(!TF1){} //vòng lặp kiểm tra cờ TF1
          TR1=0; //ngừng timer1
          TF1=0; //xóa cờ TF1
          }

          1.3 Chế độ 0

          Chế độ 0 hoàn toàn giống chế độ 1 chỉ khác là bộ định thời 16 bit được thay bằng13 bit. Bộ đếm 13 bit có thể giữ các giá trị giữa 0000 đến 1FFFF trong TH - TL. Do vậy khi bộ định thời đạt được giá trị cực đại của nó là 1FFFH thì nó sẽ quay trở về 0000và cờ TF được bật lên.

          1.4 Lập trình cho chế độ 2

          Dưới đây là những bước hoạt động của timer ở chế độ 2:

          Ø Nó là một bộ định thời 8 bit, do vậy nó chỉ cho phép các giá trị từ 00 đến FFHđược nạp vào thanh ghi TH của bộ định thời.
          Ø Sau khi 2 thanh ghi TH và TL được nạp giá trị ban đầu thì bộ định thời phải được khởi động.
          Ø Sau khi bộ định thời được khởi động, nó bắt đầu đếm tăng lên bằng cách tăng thanh ghi TL. Nó đếm cho đến khi đại giá trị giới hạn FFH của nó. Khi nó quay trở về 00 từ FFH, nó thiết lập cờ bộ định thời TF. Nếu ta sử dụng bộ định thời Timer0 thì đó là cờ TF0, còn Timer1 thì đó là cờ TF1.
          Ø Khi thanh ghi TL quay trở về 00 từ FFH, cờ TF được bật lên 1 thì thanh ghi TLđược tự động nạp lại với giá trị sao chép từ thanh ghi TH. Để lặp lại quá trình chúng ta đơn giản chỉ việc xoá cờ TF và để cho nó chạy mà không cần sự can thiệp của lập trình viên để nạp lại giá trị ban đầu. Điều này làm cho chế độ 2 được gọi là chế độ tự nạp lại so với chế độ 1 (phải nạp lại các thanh ghi TH và TL).



          Hình 7: Timer/counter chế độ 2

          Cần phải nhấn mạnh rằng: chế độ 2 là bộ định thời 8 bit. Tuy nhiên, nó lại có khả năng tự nạp, khi tự nạp lại thì giá trị ban đầu của TH được giữ nguyên, còn TL được nạp lại giá trị sao chép từ TH.

          Chế độ này có nhiều ứng dụng, bao gồm việc thiết lập tần số baud trong truyền thông nối tiếp.

          1.4.1 Các bước lập trình cho chế độ 2

          Để tạo ra một thời gian trễ sử dụng chế độ 2 của bộ định thời cần thực hiện các bước sau:
          1. Nạp thanh ghi giá trị TMOD để báo bộ định thời gian nào (Timer0 hay Timer1) được sử dụng và chế độ làm việc nào của chúng được chon.
          2. Nạp lại thanh ghi TH và TL với giá trị đếm ban đầu.
          3. Khởi động bộ định thời.
          4. Duy trì kiểm tra cờ bộ định thời TF bằng cách sử dụng một vòng lặp để xem nó đã được bật chưa. Thoát vòng lặp khi TF lên cao.
          5. Dừng bộ định thời.
          6. Xoá cờ TF.
          7. Quay trở lại bước 3. Vì chế độ 2 là chế độ tự nạp lại.

          Ví dụ 7 minh hoạ những điều này:

          Ví dụ 7:
          #include<at89x51.h> //khai báo thư viện cho VĐK 89x51
          void delay(void); //khi báo nguyên mẫu hàm con tạo trễ
          main()
          {
          TMOD=0x20; //chọn timer1, chế độ 2, 8Bit, tự nạp lại
          TH1=0x00; //nạp giá trị cho TH1
          TL1=0xFE; //nạp giá trị cho TL1
          P1_5=1; //khởi tạo chân P1_5 ở mức cao
          while(1) //vòng lặp vô hạn
          {
          delay(); //gọi chương trình con tạo trễ
          P1_5=~P1_5; //đảo tín hiệu chân P1_5
          }
          }
          void delay(void) //định nghĩa hàm delay
          {
          TR1=1; //khởi động timer1
          while(!TF1){} //vòng lặp kiểm tra cờ TF1
          TR1=0; //ngừng timer1
          TF1=0; //xóa cờ TF1
          }

          Hàm delay() trên sẽ tạo một độ trễ bằng 256 lần (FF - 00 + 1) chu kỳ của timer (không tính tổng phí các lệnh) kể từ chu trình thứ 2. Vì chu trình đầu tiên timer1 bắt đầu đếm ở vị trí 0xFE, kể từ chu trình sau thì thanh ghi TL1 mới sao chép được giá trị ở TH1.

          Comment


          • #6
            Nguyên văn bởi suupeer
            TH0 = 15535/255
            TL0 = 15536%255
            tại sao mình fai gán như vậy.nó có fai là ghép 2 byte ko.anh em giup mình với
            Đúng là ghép 2 byte đó bạn. Vì Timer 0 là 16bit timer mà.

            Comment


            • #7
              Nếu không bắt buộc phải dùng VĐK để tạo xung 1 Hz thì dùng DS1307 set cho nó tạo ra xung 1Hz thì chính xác hơn.
              0912666017

              Comment


              • #8
                Nguyên văn bởi suupeer
                TH0 = 15535/255
                TL0 = 15536%255
                tại sao mình fai gán như vậy.nó có fai là ghép 2 byte ko.anh em giup mình với
                Nguyên văn bởi spam12345 Xem bài viết
                Đúng là ghép 2 byte đó bạn. Vì Timer 0 là 16bit timer mà.
                Thật ra nói là ghép 2 byte cũng chưa chính xác lắm. Theo Atmel C51 Hardware Manual nó là như thế này:
                When TLx overflows it increments THx; when THx overflows it sets the timer overflow flag (TFx) in TCON register.
                Dịch ra là: Khi TLx (x là số timer, vd TL0, TL1, ...) tràn thì THx tăng thêm 1. TLx, THx, mỗi cái 8bit (max là 255). Từ đó suy ra, thì chắc bạn đã hiểu sao phải tính vậy rồi.

                Comment


                • #9
                  nếu muốn tạo đồng thời 2 xung là 80Hz và 9Khz trên 2 chân ngõ ra dùng timer1 và thạch anh 4Mhz thì làm thế nào vậy???

                  Comment


                  • #10
                    hóng. tao 2 xung = 2 chân đông thời thì sao cac bác

                    Comment


                    • #11
                      mình muốn mô phỏng xung tạo ra trên protus thì làm thế nào nhi?

                      Comment

                      Về tác giả

                      Collapse

                      maingochoc Lalalala Tìm hiểu thêm về maingochoc

                      Bài viết mới nhất

                      Collapse

                      Đang tải...
                      X